Branchenthemen LASER World of PHOTONICS World of Photonics Congress LASER World of PHOTONICS CHINA LASER World of PHOTONICS INDIA
Suche in...
 nur Highlights
von - bis
Suche über Themengebiet
Suche über Konferenz
Passwort vergessen? 
Jetzt registrieren!
i Alles über

Mercateo - der Megahändler für Geschäftskunden im Internet

Seite drucken Seite weiterempfehlen  |   English
A new way of Lasing

Physicists at JILA have demonstrated a novel “superradiant” laser design, which has the potential to be 100 to 1,000 times more stable than the best conventional visible lasers. This type of laser could boost the performance of the most advanced atomic clocks and related technologies, such as communications and navigation systems as well as space-based astronomical instruments.

superradianter laser 200
JILA’s superradiant laser traps 1 million rubidium atoms in a space of about 2 centimeters between two mirrors. The atoms synchronize their internal oscillations to emit laser light. Credit: Burrus/NIST
Described in the April 5, 2012, issue of Nature,* the JILA laser prototype relies on a million rubidium atoms doing a sort of synchronized line dance to produce a dim beam of deep red laser light. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder (CU).
JILA/NIST physicist James Thompson says the new laser is based on a powerful engineering technique called "phased arrays" in which electromagnetic waves from a large group of identical antennas are carefully synchronized to build a combined wave with special useful features that are not possible otherwise. 
"It's like what happens in the classical world but with quantum objects," Thompson explains. "If you line up lots of radio antennas that each emit an oscillating electric field, you can get all their electric fields to add up to make a really good directional antenna. In the same way, the individual atoms spontaneously form something like a phased array of antennas to give you a very directional laser beam."

An ordinary laser relies on millions of particles of light (photons) ricocheting back and forth between two mirrors, striking atoms in the lasing material and generating copies of themselves to build up intense light. Photons with synchronized wave patterns leak out of the mirrored cavity to form a laser beam.** The laser frequency, or color, wobbles slightly because the mirrors are vibrating due to either the motion of atoms in the mirrors or environmental disturbances—which can be as subtle as people walking past the room or cars driving near the building. 
That doesn't happen in the new JILA laser simply because the photons don't hang around long enough. The atoms are constantly energizing and emitting synchronized photons, but on the average, very few—less than one photon, in fact —stick around between the mirrors. This average, which scientists calculate indirectly based on the laser beam's output power, is just enough to maintain an oscillating electric field to sustain the atoms' synchronized behavior. Nearly all photons escape before they have a chance to become scrambled by the mirrors and disrupt the synchronized atoms—thus averting the very effect that causes laser frequency to wobble in a normal laser.
Thompson engineered a system that first traps the atoms in laser light between two mirrors and then uses other low-power lasers to tune the rate at which the atoms switch back and forth between two energy levels. The atoms emit photons each time their energy level drops. The atoms ordinarily would emit just one photon per second, but their correlated action boosts that rate 10,000-fold—making the light superradiant, Thompson says. This "stimulated emission" meets the definition of a laser (Light Amplification by the Stimulated Emission of Radiation).
"This superradiant laser is really, really dim—about a million times weaker than a laser pointer," Thompson says. "But it is much brighter than one would expect from the ordinary uncoordinated emissions from individual atoms."
Thompson's measurements show that the stability of the laser beam frequency is less than 1/10,000th as sensitive to mirror motion as in a normal optical laser. This result suggests the new approach might be used in the future to improve the best lasers developed at NIST as much as 1,000-fold. Just as important, such lasers might be moved out of the vibration-controlled laboratory environment to be used in real-world applications.

Despite its dim light, the extraordinary stability of the superradiant laser can be transferred by using it as part of a feedback system to "lock" a normal laser's output. The bright laser, potentially 100 to 1,000 times more stable than today's best lasers, could then be used in the most advanced atomic clocks to induce the atomic oscillations that are the pendulum ticks of super-accurate clocks. The added stability allows for a better match to the atoms' exact frequency, significantly boosting the precision of the clock. The improvement would extend to atomic clock-based technologies such as GPS, optical communications, advanced geodetic surveys and astronomy.

More information

weitere Beiträge ( 96 )  weitere Beiträge ( 96 ) 
Karlsruher Instituts für Technologie (KIT) / École Polytechnique Fédérale de Lausanne (EPFL)
Optische Kämme für Hochgeschwindigkeitskommunikation go
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Laser für 3D-Fernsehen go
Laser Zentrum Hannover e.V (LZH)
Perfekte Nanokugeln durch ultrakurze Laserpulse go
weitere Beiträge ( 7 )  weitere Beiträge ( 7 ) 
Prof. Dr. Andreas Tünnermann, Institutsleiter Fraunhofer IOF
Sensation in 3D go
INTERVIEW Dr. Tobias Grab, cynora GmbH
OLED-Schwergewicht blickt auf Deutschland go
INTERVIEW Prof. Dr. Nolte, Friedrich Schiller University / Fraunhofer IOF
Außergewöhnlicher wissenschaftlicher Fortschritt mit hohem wirtschaftlichen Potenzial go
weitere Beiträge ( 36 )  weitere Beiträge ( 36 ) 
Photonik Kongress 2014
Schlüsseltechnologie Photonik wächst schneller go
Laser Zentrum Hannover
Laserbearbeitung von Glaswerkstoffen großes Wachstumspotenzial go
Laser Zentrum Hannover e.V. (LZH)
Anwender, Forscher und Hersteller bescheinigen der Laserbearbeitung von Glaswerkstoffen großes Wachstumspotenzial go
weitere Beiträge ( 324 )  weitere Beiträge ( 324 ) 
Laser Components
Auf dem Weg zur Industrie 4.0 - Photodioden-Sensor bildet Urzelle für intelligentes Netzwerk go
CMOS Sensor mit Global Shutter für industrielle Anwendungen go
LIMO Lissotschenko Mikrooptik
Neue Linienlaser lasern auch Kunststoff, Glas und Displays go
Artikel verbergen  Artikel verbergen 
Sarah Jaye Oliva won 1st annual "Enabled by Optics Contest" go
Laser Zentrum Hannover e.V.
Neue Führungsstruktur am Laser Zentrum Hannover go
Kaiser-Friedrich-Forschungspreis 2013
Photonikpreis für sägefreie Dünnschicht-Solarzellen go
Herbert Walther Award
Jeff Kimble wins 2013 Herbert Walther Award go
Wenko Süptitz leitet SPECTARIS-Fachverband Photonik + Präzisionstechnik go
TU Dresden
Körperzellen als Laser go
Optoelectronics Research Centre (ORC) at the University of Southampton
Queen knights fiber Laser pioneer go
The OSA mourns the loss of Tingye Li go
Wissenschaftlichen Gesellschaft für Lasertechnik e. V.
Preis für Remote-Laserstrahlschneiden go
Deutscher Umweltpreis 2012
Deutscher Umweltpreis für konzentriertes Sonnenlicht go
"Green Photonics" for young academics
Green-Photonics-Preis für energieeffiziente Lichtkacheln go
Lode Pollet bekommt den Newcomb-Cleveland-Preis go
weitere Beiträge ( 13 )  weitere Beiträge ( 13 ) 
40 Jahrfeier in München
LASER World of PHOTONICS 2013 gibt der Branche Aufwind go
Ausstellerneuheiten im New Products Guide 2013 go
Messe München
Das Rahmenprogramm der LASER World of PHOTONICS 2013 go

 News - 25.04.2014
 zurück    top